When producing music, especially with digital instruments, knowing the relationships among MIDI, frequency and note
names is crucial.
This knowledge allows for accurate translation of guitar music into digital formats and vice
versa.
On this page, you'll find an interactive tool and a
complete table
that will help you understand how to express a note by frequency, and, conversely, the frequency of musical notes.
Interactive Fretboard To Show MIDI, Note Names and Frequency
This fretboard shows the musical notes, the MIDI codes and their pitch frequencies in Hertz (Hz).
Click on some frets and select "show MIDI", names or frequency.
What is MIDI
MIDI (Musical Instrument Digital Interface) is a technical standard that describes a protocol, digital interface, and connectors, allowing a wide variety of electronic
musical
instruments, computers, and other devices to connect and communicate with each other.
Notes On The Guitar
Each note on the guitar, like on any musical instrument, can be represented by a specific MIDI code.
This code is a numerical representation of a specific note and its
octave.
Notes On The Guitar
Each note in music corresponds to a specific frequency.
Frequency is measured in Hertz (Hz) and represents the number of cycles per second of a sound wave.
For example, the A open string on a guitar (A2) typically vibrates at 110 Hz.
Note Frequency Chart
The music frequency chart below shows the note frequency for all the existing MIDI codes and the corresponding note names.
Note
Midi
Freq (hz)
Cb0
11
15.434
C0
12
16.352
Db0
13
17.324
C#0
13
17.324
D0
14
18.354
Eb0
15
19.445
D#0
15
19.445
Fb0
16
20.602
E0
16
20.602
F0
17
21.827
E#0
17
21.827
Gb0
18
23.125
F#0
18
23.125
G0
19
24.5
Ab0
20
25.957
G#0
20
25.957
A0
21
27.5
Bb0
22
29.135
A#0
22
29.135
Cb1
23
30.868
B0
23
30.868
C1
24
32.703
B#0
24
32.703
Db1
25
34.648
C#1
25
34.648
D1
26
36.708
Eb1
27
38.891
D#1
27
38.891
Fb1
28
41.203
E1
28
41.203
F1
29
43.654
E#1
29
43.654
Gb1
30
46.249
F#1
30
46.249
G1
31
48.999
Ab1
32
51.913
G#1
32
51.913
A1
33
55
Bb1
34
58.27
A#1
34
58.27
Cb2
35
61.735
B1
35
61.735
C2
36
65.406
B#1
36
65.406
Db2
37
69.296
C#2
37
69.296
D2
38
73.416
Eb2
39
77.782
D#2
39
77.782
Fb2
40
82.407
E2
40
82.407
F2
41
87.307
E#2
41
87.307
Gb2
42
92.499
F#2
42
92.499
G2
43
97.999
Ab2
44
103.83
G#2
44
103.83
A2
45
110
Bb2
46
116.54
A#2
46
116.54
Cb3
47
123.47
B2
47
123.47
C3
48
130.81
B#2
48
130.81
Db3
49
138.59
C#3
49
138.59
D3
50
146.83
Eb3
51
155.56
D#3
51
155.56
Fb3
52
164.81
E3
52
164.81
F3
53
174.61
E#3
53
174.61
Gb3
54
185
F#3
54
185
G3
55
196
Ab3
56
207.65
G#3
56
207.65
A3
57
220
Bb3
58
233.08
A#3
58
233.08
Cb4
59
246.94
B3
59
246.94
C4
60
261.63
B#3
60
261.63
Db4
61
277.18
C#4
61
277.18
D4
62
293.66
Eb4
63
311.13
D#4
63
311.13
Fb4
64
329.63
E4
64
329.63
F4
65
349.23
E#4
65
349.23
Gb4
66
369.99
F#4
66
369.99
G4
67
392
Ab4
68
415.3
G#4
68
415.3
A4
69
440
Bb4
70
466.16
A#4
70
466.16
Cb5
71
493.88
B4
71
493.88
C5
72
523.25
B#4
72
523.25
Db5
73
554.37
C#5
73
554.37
D5
74
587.33
Eb5
75
622.25
D#5
75
622.25
Fb5
76
659.26
E5
76
659.26
F5
77
698.46
E#5
77
698.46
Gb5
78
739.99
F#5
78
739.99
G5
79
783.99
Ab5
80
830.61
G#5
80
830.61
A5
81
880
Bb5
82
932.33
A#5
82
932.33
Cb6
83
987.77
B5
83
987.77
C6
84
1046.5
B#5
84
1046.5
Db6
85
1108.7
C#6
85
1108.7
D6
86
1174.7
Eb6
87
1244.5
D#6
87
1244.5
Fb6
88
1318.5
E6
88
1318.5
F6
89
1396.9
E#6
89
1396.9
Gb6
90
1480
F#6
90
1480
G6
91
1568
Ab6
92
1661.2
G#6
92
1661.2
A6
93
1760
Bb6
94
1864.7
A#6
94
1864.7
Cb7
95
1975.5
B6
95
1975.5
C7
96
2093
B#6
96
2093
Db7
97
2217.5
C#7
97
2217.5
D7
98
2349.3
Eb7
99
2489
D#7
99
2489
Fb7
100
2637
E7
100
2637
F7
101
2793.8
E#7
101
2793.8
Gb7
102
2960
F#7
102
2960
G7
103
3136
Ab7
104
3322.4
G#7
104
3322.4
A7
105
3520
Bb7
106
3729.3
A#7
106
3729.3
Cb8
107
3951.1
B7
107
3951.1
C8
108
4186
B#7
108
4186
Db8
109
4434.9
C#8
109
4434.9
D8
110
4698.6
Eb8
111
4978
D#8
111
4978
Fb8
112
5274
E8
112
5274
F8
113
5587.7
E#8
113
5587.7
Gb8
114
5919.9
F#8
114
5919.9
G8
115
6271.9
Ab8
116
6644.9
G#8
116
6644.9
A8
117
7040
Bb8
118
7458.6
A#8
118
7458.6
Cb9
119
7902.1
B8
119
7902.1
C9
120
8372
B#8
120
8372
Db9
121
8869.8
C#9
121
8869.8
D9
122
9397.3
Eb9
123
9956.1
D#9
123
9956.1
Fb9
124
10548
E9
124
10548
F9
125
11175
E#9
125
11175
Gb9
126
11840
F#9
126
11840
G9
127
12544
Ab9
128
13290
G#9
128
13290
A9
129
14080
Bb9
130
14917
A#9
130
14917
B9
131
15804
B#9
132
16744
MIDI, Notes and Frequency Recap
To recap, the MIDI code is a digital representation of the note.
The note name and octave number give a musical representation that musicians use.
The frequency is the physical property of the sound wave produced when the note is played.
Each note on the guitar can be described in these three ways.
Moving up a fret on the guitar increases the pitch by a semitone.
This change can be observed in the MIDI code (increases by 1), the note name and octave (changes according to musical
scales), and the frequency (which increases).